Nonlinear Independent Component Analysis By
نویسندگان
چکیده
Independent component analysis is often approached from an information theoretic perspective employing specific sample estimates for the mutual information between the separated outputs. These approximations involve the nonparametric estimation of signal entropies. The common approach involves the estimation of these quantities and adaptation based on these criteria. In contrast, in this paper, we propose a Gaussianization-based approach, where the separation is performed in two stages: Gaussianization of the mixtures using a homomorphic nonlinearity and separation of the independent components using principal component analysis (both stages possibly adaptive). Due to the rotation uncertainty in nonlinear ICA, the original sources cannot be recovered solely by the independence assumption. The proposed ICA methodology is applicable to instantaneous linear and nonlinear mixtures. The idea also generalizes easily to complex-valued nonlinear ICA.
منابع مشابه
Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions
Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...
متن کاملLinear and Nonlinear Multivariate Classification of Iranian Bottled Mineral Waters According to Their Elemental Content Determined by ICP-OES
The combinations of inductively coupled plasma-optical emission spectrometry (ICP-OES) and three classification algorithms, i.e., partial least squares discriminant analysis (PLS-DA), least squares support vector machine (LS-SVM) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of Iranian bottled mineral waters, were explored. ICP-OES was used for th...
متن کاملBayesian Nonlinear Independent Component Analysis by Multi-Layer Perceptrons
In this chapter, a nonlinear extension to independent component analysis is developed. The nonlinear mapping from source signals to observations is modelled by a multi-layer perceptron network and the distributions of source signals are modelled by mixture-of-Gaussians. The observations are assumed to be corrupted by Gaussian noise and therefore the method is more adequately described as nonlin...
متن کاملSymplectic Nonlinear Component Analysis
Statistically independent features can be extracted by nding a factorial representation of a signal distribution. Principal Component Analysis (PCA) accomplishes this for linear correlated and Gaussian distributed signals. Independent Component Analysis (ICA), formalized by Comon (1994), extracts features in the case of linear statistical dependent but not necessarily Gaussian distributed signa...
متن کاملNonlinear Independent Component Analysis by Self-Organizing Maps
Linear Independent Component Analysis considers the problem of nd-ing a linear transformation that makes the components of the output vector statistically independent. This can be applied to blind source separation, where the input data consist of unknown linear mixtures of unknown independent source signals. The original source signals can be recovered from their mixtures using the assumption ...
متن کاملModeling and analysis of a three-component piezoelectric force sensor
This paper presents a mathematical model for the vibration analysis of a three-component piezoelectric force sensor. The cubic theory of weakly nonlinear electroelasticity is applied to the model for describing the electromechanical coupling effect in the piezoelectric sensing elements which operate in thickness-shear and thickness-stretch vibration modes. Hamilton's principle is used to derive...
متن کامل